Recs.
Updated
C (/siː/, as in the letter c) is a general-purpose, imperative computer programming language, supporting structured programming, lexical variable scope and recursion, while a static type system prevents many unintended operations. By design, C provides constructs that map efficiently to typical machine instructions, and therefore it has found lasting use in applications that had formerly been coded in assembly language, including operating systems, as well as various application software for computers ranging from supercomputers to embedded systems.
C was originally developed by Dennis Ritchie between 1969 and 1973 at Bell Labs, and used to re-implement the Unix operating system. It has since become one of the most widely used programming languages of all time, with C compilers from various vendors available for the majority of existing computer architectures and operating systems. C has been standardized by the American National Standards Institute (ANSI) since 1989 (see ANSI C) and subsequently by the International Organization for Standardization (ISO).
C is an imperative procedural language. It was designed to be compiled using a relatively straightforward compiler, to provide low-level access to memory, to provide language constructs that map efficiently to machine instructions, and to require minimal run-time support. Despite its low-level capabilities, the language was designed to encourage cross-platform programming. A standards-compliant and portably written C program can be compiled for a very wide variety of computer platforms and operating systems with few changes to its source code. The language has become available on a very wide range of platforms, from embedded microcontrollers to supercomputers.
SpecsUpdate
Pros
Pro Portable
C is portable between most hardware. Generally a C compiler is made for any new architecture, and already exists for existing architectures.
C is portable between all operating systems (Windows, UNIX, Mac, etc.) and only needs a program to be recompiled to work. This allows anyone on any operating system to learn about the language and not be held back by intricacies of their operating system.
With this said, C's portability these days is not quite what it used to be. Much of said portability relies on the POSIX standard in particular, and as time passes, the compliance of a given system with that standard is becoming less certain; especially in the case of Linux. Most things will still be portable (or at least emulatable) between Windows, Linux, and FreeBSD for example; but you will at times need to make use of platform-specific support libraries and APIs as well.
Pro Understanding of computers
Learning C forces you to grapple with the low-level workings of your computer (memory management, pointers, etc.) in ways that the other languages abstract away. Without an understanding of these low-level aspects of computer programming you will be limited if you try to develop an application that needs to run in a memory or performance constrained environment.
Other languages like Python can obscure a lot of details, so your foundation may be weaker.
Pro Low level of abstraction
While higher level languages languages like Java and Python provide possibilities to be "more expressive" per line of code, it's much more convenient to start with "less efficient" (get me right) language, in order to get initial concepts of how things behave at lower level.
Actually C is a good starting point moving to both higher and lower levels of abstraction, the good example here would be learning C before Assembler, as for general use the Assembler quite hard to understand due to low level of its abstraction (like getting the understanding on how loops work in C before trying to implement them on Assembler).
Pro Portable between CPU architectures
C was designed to be independent of any particular machine architecture, and so with a little care, it is easy to write "portable" programs (see here). By design, C provides constructs that map efficiently to typical machine instructions, and therefore it has found lasting use in applications that had formerly been coded in assembly language like operating systems or small embedded systems.