When comparing Smalltalk vs TypeScript, the Slant community recommends TypeScript for most people. In the question“What is the best programming language to learn first?” TypeScript is ranked 6th while Smalltalk is ranked 15th. The most important reason people chose TypeScript is:
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference. It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Environment of live objects
You can modify the system as it's running. You're "swimming with the fish", instead of probing a black box by remote control.
Pro Easy to learn and experiment
Pro Inspector makes objects transparent
Programmers must make detailed mental models of the system they are developing. Bugs usually happen when the mental model does not match the actual system. This is one of the greatest difficulties beginners have because most systems are so opaque. It takes a lot of effort to see what's really going on. But in Smalltalk this is much easier, thanks to the powerful tools included in the environment, like the object inspector.
Pro Superb Integrated Development Environment (IDE)
All tools (Inspector, Browser, Debugger etc.) are written in Smalltalk and are live objects in the environment. All sources are present, so that the tools can easily be studied, changed and experimented with.
The same goes for the other components like the compiler, OS-Integration etc.
Pro Pure and easy object orientation
Smalltalk is one of few languages that are purely object oriented. This provides a solid and easy to understand base on which to learn object oriented programming, the most popular approach to programming.
Pro Elegant syntax fits on a postcard
The syntax was designed to be easy enough for children to learn. Beginners can learn the language rules very quickly and then focus on programming without fighting the syntax at the same time. Things that have to be baked into the grammar in other languages are simple message sends with block arguments in Smalltalk. Expressions have only three precedence levels to worry about.
Pro Agile "interactive" test-driven development
Smalltalk had the original (and still the best) unit test system that inspired it in many other languages (like Java's JUnit). Working with interactive live objects in Smalltalk style TDD makes it easy to teach and learn TDD.
Pro Powerful integrated debugger
You can edit code and swap it in while the program is still running after an exception has already been signaled, or restart from anywhere in the call stack. You can inspect and modify the state of any object. Some Smalltalkers write unit tests and then program exclusively in the debugger.
Pro Internal source code and documentation
You can explore how everything works easily.
Pro Incremental compilation
Smalltalk provides an extremely fast code-compile-run-debug cycle. You don't have to stop and reset the world to tweak your program, since you can compile one method at a time while the environment is still running. This is great for beginners to experiment and prototype ideas.
Pro Inspired many other languages' object systems
Pro Open source
MIT licensed implementations Pharo, Squeak, Cuis & Dolphin
and GPL licensed GnuSmalltalk.
Pro Save and restore virtual machine image
A Smalltalk environment can save the state of a running program and later restore and resume execution. This includes the internal state of live objects, multiple thread stacks, and debugging sessions, making it easier for beginners to take the exact problem to an expert for assistance.
Pro Language uniformity
This leads to a very simple programming model (pure OO) that is still very powerful. A lot of stuff that is hard to implement in other languages is easier in Smalltalk.
Pro Graphical user interface
Beginners are usually stuck making command-line applications in other languages, because GUIs are too hard. Smalltalk GUIs are easy enough to start with.
Pro First-class functions with lexical closures
Also known as "blocks". These objects contain reusable snippets of code and as first-class objects they can be passed as arguments to other methods or blocks and also returned from them. "lexical closures" mean they retain access to the variables in the lexical environment they were written in, that is, in the surrounding code.
Pro It invented a lot of stuff
Smalltalk is the inventor of Just-in-Time compilation and the MVC concept, refactoring through their so-called refactoring browser and it was also one of the first adopters of a language virtual machine, closures, live programming, test driven development, an IDE and the development of GUI`s.
Pro As a first language, almost forces you to learn OO design
Hybrid languages (e.g., Java, C#, C++) make it easy to slip into procedural thinking. Smalltalk's pure OO approach makes it hard not to think in object-oriented terms. In addition, since the entire IDE and runtime components are there in the image for you to browse, you have plenty of examples of good OO design to learn from.
Pro Provides a functional way to interact with objects
Many languages today use object orientation, while the most of them stock on the half way in that perspective.
Smalltalk sees literally everything as an object and this includes things like the classes and primitive data types. There is are zero control structures such as selection and iteration, since all is done by sending messages to objects.
It use a lot of concepts from Lisp in order to provide a nice experience for this pure kind of object orientation.
It provides immutable data structures, closures, anonymous functions and higher order functions, while all those functions are objects. This is what makes Smalltalk so simple, elegant, and easy.
All this counts for Pharo, while other implementations as Amber are probably feature complete to it.
Pro Optional static typing
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference.
It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Pro Strong typed language
Lot of benefits of it, you can read this.
Pro Strict superset of Javascript
Every existing Javascript program is already a valid TypeScript program giving it the best support for existing libraries, which is particularly useful if you need to integrate with an existing Javascript code base.
Pro First party Visual Studio support
As a Microsoft developed project, it has first party Visual Studio support that's on par with its C# support with features like syntax sensitive statement completion.
Pro Has a repository of high quality TypeScript type definitions for popular libraries
There are many ready to use and high quality TypeScript definitions for popular libraries including jquery, angular, bootstrap, d3, lodash and many-many more.
Pro Adds support for object-oriented programming
Typescript enables familiar object-oriented programming patterns: classes, inheritance, public/private methods and properties, et cetera.
Pro Polyfill for ES6 fat-arrow syntax
Typescript implements the fat arrow syntax, which always maintains the current context for this
and is a shorter/more convenient syntax than traditional function definition.
Pro Great support for React, integrated typed JSX parsing
Strongly typed react components, so UI "templating" automatically gains type safety.
Pro Great support for editors (Sublime, Code, Vim, IntelliJ...)
Pro Works well with existing Javascript code
Both can call Javascript code and be called by Javascript code. Making transitioning to the language very easy.
Pro Compiles to very native looking code
Compiles to simple looking Javascript making it easy to understand what is happening and learn the language (if you already know Javascript).
Pro Built and supported by Microsoft
Being built by Microsoft, TypeScript is much more likely than most other similar open-source projects to receive continued long-term support, good documentation, and a steady stream of development.
Pro Ability to do functional programming
Pro Clear roadmap
TypeScript has a clear and defined roadmap with rapid and constant releases.
Pro Low number of logical errors brought in by built-in type annotations
TypeScript's built-in type signatures allow developers to fully document interfaces and make sure that they will be correctly compiled. Therefore, cutting down on logical errors.
Pro Works well with Angular 2
Angular 2 is built using TypeScript and applications built using it can make use of that (or not).
Cons
Con OO is becoming obsolete
Smalltalk did it best, but the whole paradigm is a poor fit for the expected future multicore processors. Isolated mutable variables with no compile checks is a recipe for race conditions in multithreaded code. Beginners would be better off learning a functional language.
Con Not common
Smalltalk missed an opportunity to become mainstream when its implementations cost $5000 per seat versus $0 open source. New open source implementations (Pharo, Squeak) have minor corporate backers but not yet an IT behemoth. Direct jobs are scarce (but indirectly Smalltalk experience is very well regarded). Online communities are relatively small.
Con Not useful for mobile development
While Smalltalk is very powerful and easy to learn, it doesn't have a well supported mobile distribution, but you'll be spoiled for working in mainstream languages like Java, Swift or Kotlin where jobs are more readily available.
Con Virtual machine in its own isolated world
Smalltalk wants to be the whole OS. While this has tremendous advantages internally, interacting with the world outside the VM is not as easy as pure Smalltalk and must be done via a Foreign Function Interface.
Con Non-standard arithmetic ordering
Since every operation is considered a message sent sent is a specific order, all arithmetic operators have the same precedence. E.g. 2 + 3 x 4 translates to 2 + 3, and the result is multiplied by 4, giving an answer of 24 (instead of the correct answer - 14). Once you are learn this, it can easily handled using brackets, e.g. 2 + (3 x 4), but still a momentary suprise for beginners.
Con Too similar to Javascript
Presents some advantages compared to Javascript, but because it is designed to be a superset of Javascript, it means all the bad parts of Javascript are still present.
Con Type checking not enforced by default
You have to use compiler flags to make sure it catches flaws like usage of implicit any, etc.
Con Type inference coverage is incomplete
The default type when declaring and using a variable is any
. For example, the following should break but does not:
function add(a:number) { return a + 1 }
function addAB(a, b) {return add(a) + b}
addAB("this should break but doesn't :(", 100)
In order to avoid this, you have to declare type signatures for every variable or parameter or set the flag --noImplicityAny
when running the compiler.
Con Requires "this" for field access
Even in cases were there is no ambiguity, you still have to use "this.fieldName" instead of just "fieldName".
Con Syntax is too verbose
Con No support for dead code elimination
Typescript compiler does not remove dead code from generated file(s), you have to use external tools to remove unused code after compilation. This is harder to achieve, because Typescript compiler eliminated all type information.
Con No support for conditional compilation
There is no clean way to have debug and release builds compiled from the same source, where the release version removes all debugging tools and outputs from the generated file(s).
Con Awful error messages
Comparing to Elm or Rust for example, TypeScript's error messages won't say you very much. For example if you change method of interface which your class implements it won't say your class have incorrect implementation. Instead it'll show error in usage of instances of class. In some cases it can spoil hours of your work trying to figure out why your parameters are incorrect.
Con Technical debt
As consequence of not enforcing type checking.
Con No Java-like package structure
If you prefer a Java-like approach of partitioning your code into different packages, the module system of typescript will confuse you.