When comparing Julia vs J, the Slant community recommends Julia for most people. In the question“What is the best programming language to learn first?” Julia is ranked 12th while J is ranked 47th. The most important reason people chose Julia is:
Julia runs almost as fast as (and in fact in some cases faster than) C code.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Almost as fast as C
Julia runs almost as fast as (and in fact in some cases faster than) C code.
Pro Strong dynamic typing
Dynamic and high level, but does not isolate the user from properly thinking about types. Can do explicit type signatures which is great for teaching structured thinking.
Pro Great standard REPL
Out of the box Julia has a very good Read-Eval-Print-Loop, which both completes functions and types, as well as completion based on history of previous statements. It integrates well with the shell and has an excellent online help system.
Pro Nice regular syntax
Julia code is easy to read and avoid a lot of unnecessary special symbols and fluff. It uses newline to end statements and "end" to end blocks so there is no need for lots of semicolons and curly braces. It is regular in that unless it is a variable assignment, function name always comes first. No need to be confused about whether something is a method on an object or a free function.
Unlike Python and Ruby, since you can annotate the types a function operates on, you can overload function names, so that you can use the same function name for many data types. So you can keep simple descriptive function names and not have to invent artificial function names to separate them from the type they operate on.
Pro Written in itself
The Julia language is written in itself to a much larger extent than most other languages, so a budding programmer can read through the depths of the standard library and learn exactly how things work all the way down to the low-level bit-twiddling details, which can be englightening.
Pro Powerful n-dimensional arrays
Julia has built in n-dimensional arrays similar in functionality as Python's numpy.
Pro Function overloading
You can have multiple functions with the same name, but doing different things depending on function arguments and argument types.
Pro Amazing learning curve
Julia requires no boilerplate code – a beginner needs to write only the parts they care about. This combined with the REPL provides the best learning experience available.
Pro High-level code
Julia provides a high level of abstraction, making platform-independent programming trivial and easing the learning curve.
Pro Function and operator broadcasting
You can perform operations on scalars, for example 2^2 or [1, 2, 3].^2.
Pro Strong Metaprogramming
Julia allows you to edit Julia code in the language itself and write powerful macros. It is a great introduction to metaprogramming features
Pro REPL-based
The Julia REPL allows quickly testing how some code behaves and gives access to documentation and package management immediately in the REPL.
Pro Every function is an operator
3 classes of operators (verbs, adverbs, and conjunctions) with verbs the most basic function that take either 1 or 2 (infix) parameters. Operators allow function composition with a minimum of parentheses.
Pro Simpler Imperative language constructs as failback to functional programming
J also supports multiline functional definitions similar to BASIC/Pascal. Including error handling.
Pro Compiled language speed from interpreted language.
Each built in operator is a C/asm function, and special code further optimizes some operator combinations. Result is optimized C speed from quick parsing. Array orientation parses and compiles a function once, and applies it to all array items.
Pro 25 year old language, with core unchanged in last 10 years
Still actively developed, but most recent changes have been in libraries and IDE and platform support.
Language is considered "perfected"... though not quite.
Pro Language reference has simple one page index
Complete core programming functional tools allow writting programs and libraries without imports.
Pro No operator precedence rules
(... within each of the 3 operator classes) makes reading code easier. Very simple parsing rules.
Cons
Con Young language with limited support
Julia was released in 2012. Due to its short existence, there is a limited amount of support for the language. Very few libraries exist as of yet, and the community is still quite small (though growing quickly).
Con 1-based array and column major
This design probably comes from Matlab, but makes it unnatural to interface C and C++ and python.
Con Syntax is pure madness
quicksort=: (($:@(<#[), (=#[), $:@(>#[)) ({~ ?@#)) ^: (1<#)