TypeScript vs Pony
When comparing TypeScript vs Pony, the Slant community recommends Pony for most people. In the question“What are the best (productivity-enhancing, well-designed, and concise, rather than just popular or time-tested) programming languages?” Pony is ranked 22nd while TypeScript is ranked 23rd. The most important reason people chose Pony is:
The unique type system allows the compiler to automatically schedule actors on threads, giving you reliable concurrency for free.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Optional static typing
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference.
It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Pro Strong typed language
Lot of benefits of it, you can read this.
Pro Strict superset of Javascript
Every existing Javascript program is already a valid TypeScript program giving it the best support for existing libraries, which is particularly useful if you need to integrate with an existing Javascript code base.
Pro First party Visual Studio support
As a Microsoft developed project, it has first party Visual Studio support that's on par with its C# support with features like syntax sensitive statement completion.
Pro Has a repository of high quality TypeScript type definitions for popular libraries
There are many ready to use and high quality TypeScript definitions for popular libraries including jquery, angular, bootstrap, d3, lodash and many-many more.
Pro Adds support for object-oriented programming
Typescript enables familiar object-oriented programming patterns: classes, inheritance, public/private methods and properties, et cetera.
Pro Polyfill for ES6 fat-arrow syntax
Typescript implements the fat arrow syntax, which always maintains the current context for this
and is a shorter/more convenient syntax than traditional function definition.
Pro Great support for React, integrated typed JSX parsing
Strongly typed react components, so UI "templating" automatically gains type safety.
Pro Great support for editors (Sublime, Code, Vim, IntelliJ...)
Pro Works well with existing Javascript code
Both can call Javascript code and be called by Javascript code. Making transitioning to the language very easy.
Pro Compiles to very native looking code
Compiles to simple looking Javascript making it easy to understand what is happening and learn the language (if you already know Javascript).
Pro Built and supported by Microsoft
Being built by Microsoft, TypeScript is much more likely than most other similar open-source projects to receive continued long-term support, good documentation, and a steady stream of development.
Pro Ability to do functional programming
Pro Clear roadmap
TypeScript has a clear and defined roadmap with rapid and constant releases.
Pro Low number of logical errors brought in by built-in type annotations
TypeScript's built-in type signatures allow developers to fully document interfaces and make sure that they will be correctly compiled. Therefore, cutting down on logical errors.
Pro Works well with Angular 2
Angular 2 is built using TypeScript and applications built using it can make use of that (or not).
Pro Concurrency model based on actors
The unique type system allows the compiler to automatically schedule actors on threads, giving you reliable concurrency for free.
Pro Reliable
Because of its capabilities secure type system, provided you don't use the C FFI, references will never be stale, race conditions are effectively impossible, deadlocks don't happen because locks and mutexes are never needed, and processes never crash because all exceptions must be handled. (Barring compiler bugs or external memory corruption, of course.) Pony programs can still lock up due to infinite loops, like any Turing-complete language.
Pro High performance
Compiles to native code, and features an intelligent garbage collector that takes advantage of the actor architecture to get essentially free garbage collection.
Pro Trivially simple C FFI
Calling low-level C functions is as simple as use "lib:clibrary"
and @c_function_name[return_type](parameter:type)
. Linking C to Pony libraries is just as easy, as the Pony compiler will generate appropriate header files.
Cons
Con Too similar to Javascript
Presents some advantages compared to Javascript, but because it is designed to be a superset of Javascript, it means all the bad parts of Javascript are still present.
Con Type checking not enforced by default
You have to use compiler flags to make sure it catches flaws like usage of implicit any, etc.
Con Type inference coverage is incomplete
The default type when declaring and using a variable is any
. For example, the following should break but does not:
function add(a:number) { return a + 1 }
function addAB(a, b) {return add(a) + b}
addAB("this should break but doesn't :(", 100)
In order to avoid this, you have to declare type signatures for every variable or parameter or set the flag --noImplicityAny
when running the compiler.
Con Requires "this" for field access
Even in cases were there is no ambiguity, you still have to use "this.fieldName" instead of just "fieldName".
Con Syntax is too verbose
Con No support for dead code elimination
Typescript compiler does not remove dead code from generated file(s), you have to use external tools to remove unused code after compilation. This is harder to achieve, because Typescript compiler eliminated all type information.
Con No support for conditional compilation
There is no clean way to have debug and release builds compiled from the same source, where the release version removes all debugging tools and outputs from the generated file(s).
Con Awful error messages
Comparing to Elm or Rust for example, TypeScript's error messages won't say you very much. For example if you change method of interface which your class implements it won't say your class have incorrect implementation. Instead it'll show error in usage of instances of class. In some cases it can spoil hours of your work trying to figure out why your parameters are incorrect.
Con Technical debt
As consequence of not enforcing type checking.
Con No Java-like package structure
If you prefer a Java-like approach of partitioning your code into different packages, the module system of typescript will confuse you.
Con Small community
Con No option to declare that a function throws errors
Con All exceptions must be caught
The compiler enforces this, so code is littered with try
s.
Con Limited documentation
As Pony is such a new language, documentation is relatively light, and tutorials are few and far-between.
Con Few libraries
Con Garbage collector can't run until you yield
A long-running behavior can leak memory because the garbage collector has no chance to run.
Con Limited tooling
There's no IDE. Debuggers are fairly basic. Pony is too young to have much of an ecosystem.
Con Divide by zero is allowed
And instead of some sensible result like NaN or Inf, the answer is zero! Most languages would just raise an exception (and Pony used to do this), but since the compiler enforces the rule that "all exceptions must be caught" the proliferation of try
s was determined to be too burdensome on the programmer. This makes the whole design of the exception system questionable.
Con Unstable API
Pony is not ready for production. It has yet to release version 1.0, and there are frequent breaking changes.
Con Difficult learning curve
The type system uses a capabilities-oriented approach to reference semantics, which can be difficult to wrap your head around at first. The lack of more common object-oriented features and the preference for simplicity over familiarity can make it difficult for new users to model their program design.