When comparing TypeScript vs Java (via GWT), the Slant community recommends TypeScript for most people. In the question“What are the best languages that compile to JavaScript? ” TypeScript is ranked 1st while Java (via GWT) is ranked 21st. The most important reason people chose TypeScript is:
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference. It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Optional static typing
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference.
It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Pro Strong typed language
Lot of benefits of it, you can read this.
Pro Strict superset of Javascript
Every existing Javascript program is already a valid TypeScript program giving it the best support for existing libraries, which is particularly useful if you need to integrate with an existing Javascript code base.
Pro First party Visual Studio support
As a Microsoft developed project, it has first party Visual Studio support that's on par with its C# support with features like syntax sensitive statement completion.
Pro Has a repository of high quality TypeScript type definitions for popular libraries
There are many ready to use and high quality TypeScript definitions for popular libraries including jquery, angular, bootstrap, d3, lodash and many-many more.
Pro Adds support for object-oriented programming
Typescript enables familiar object-oriented programming patterns: classes, inheritance, public/private methods and properties, et cetera.
Pro Polyfill for ES6 fat-arrow syntax
Typescript implements the fat arrow syntax, which always maintains the current context for this
and is a shorter/more convenient syntax than traditional function definition.
Pro Great support for React, integrated typed JSX parsing
Strongly typed react components, so UI "templating" automatically gains type safety.
Pro Great support for editors (Sublime, Code, Vim, IntelliJ...)
Pro Works well with existing Javascript code
Both can call Javascript code and be called by Javascript code. Making transitioning to the language very easy.
Pro Compiles to very native looking code
Compiles to simple looking Javascript making it easy to understand what is happening and learn the language (if you already know Javascript).
Pro Built and supported by Microsoft
Being built by Microsoft, TypeScript is much more likely than most other similar open-source projects to receive continued long-term support, good documentation, and a steady stream of development.
Pro Ability to do functional programming
Pro Clear roadmap
TypeScript has a clear and defined roadmap with rapid and constant releases.
Pro Low number of logical errors brought in by built-in type annotations
TypeScript's built-in type signatures allow developers to fully document interfaces and make sure that they will be correctly compiled. Therefore, cutting down on logical errors.
Pro Works well with Angular 2
Angular 2 is built using TypeScript and applications built using it can make use of that (or not).
Pro Strongly typed, good tooling
That's Java, so it is strongly typed, and we can use fully the IDE: error detection, refactoring, auto-completion, etc.
Pro Familiar for Java developers
Perfect if you have a strong background in Java programming, and need to code for the client side.
Pro Fantastic IDEs
Because Java is statically typed, integrated development environments (IDEs) for Java can provide a lot more feedback on errors you will encounter. Java IDEs can give you specific errors in the location where they occur without having to run the code every time. This makes is faster to debug and learn from your mistakes.
IDEs also have extensive auto complete capabilities that can help you learn the programming libraries you are using faster and tell you what functions are available.
Pro Most commonly used language in industry
Java is one of the most popular languages in industry, consistently ranking either first, or occasionally second (behind C or Javascript) in terms of usage. Polls (see sources below) show it to be consistently in high demand, particularly as measured by job board postings. This makes Java a great time investment, as you will be easily able to get a job utilizing your skills, particularly as those Java applications in production now will continue to need maintenance in the future. It also results in great support for tools and plenty of computer science books, example projects and online tutorials.
Pro Consistent programming standards
Most Java code follows very standardized coding styles. This means that when you're starting out, there are fewer questions about how you should implement something as the programming styles and patterns are well established and consistent. This consistent style means that it's often easier to follow others' example code, and that it's more likely to meet at least a certain minimum standard of quality. This discipline with consistent stylistic standards also becomes useful later, when collaborating on projects with larger teams.
Pro Highly optimized JavaScript
Produced JS is highly optimized, can be separated in modules with lazy loading, can be internationalized while loading only the chosen language.
Cons
Con Too similar to Javascript
Presents some advantages compared to Javascript, but because it is designed to be a superset of Javascript, it means all the bad parts of Javascript are still present.
Con Type checking not enforced by default
You have to use compiler flags to make sure it catches flaws like usage of implicit any, etc.
Con Type inference coverage is incomplete
The default type when declaring and using a variable is any
. For example, the following should break but does not:
function add(a:number) { return a + 1 }
function addAB(a, b) {return add(a) + b}
addAB("this should break but doesn't :(", 100)
In order to avoid this, you have to declare type signatures for every variable or parameter or set the flag --noImplicityAny
when running the compiler.
Con Requires "this" for field access
Even in cases were there is no ambiguity, you still have to use "this.fieldName" instead of just "fieldName".
Con Syntax is too verbose
Con No support for dead code elimination
Typescript compiler does not remove dead code from generated file(s), you have to use external tools to remove unused code after compilation. This is harder to achieve, because Typescript compiler eliminated all type information.
Con No support for conditional compilation
There is no clean way to have debug and release builds compiled from the same source, where the release version removes all debugging tools and outputs from the generated file(s).
Con Awful error messages
Comparing to Elm or Rust for example, TypeScript's error messages won't say you very much. For example if you change method of interface which your class implements it won't say your class have incorrect implementation. Instead it'll show error in usage of instances of class. In some cases it can spoil hours of your work trying to figure out why your parameters are incorrect.
Con Technical debt
As consequence of not enforcing type checking.
Con No Java-like package structure
If you prefer a Java-like approach of partitioning your code into different packages, the module system of typescript will confuse you.
Con Small community
Con No option to declare that a function throws errors
Con Too verbose
- A Hello world needs package, class, static method and the actual
printf
. - Reading a line from input requires instatiating 5 objects in the right order.
- Exceptions are everywhere, particularly since all values are nullable.
- Java has a getter/setter culture, but without native syntax support.
- portable Java code lacks anonymous functions, and continues to lack good support for partial application, compensating instead with verbose design patterns, kludges like anonymous inner classes, or just inline code.
- It is statically typed without type inference, with a culture that promotes long class names.
- Poor support for sum-types and pattern matching leads to overuse of inheritance for dynamic dispatch and chains of nested conditionals
Especially for beginners, this can make reading Java code feel overwhelming; most Java courses tell students to simply copy, paste, and ignore a significant percentage of the code until they've learned enough to understand what it means.
For experienced programmers, this makes Java feel tedious, especially without an IDE, and actively discourages some solutions and some forms of abstraction.