When comparing Scheme vs Haxe, the Slant community recommends Scheme for most people. In the question“What is the best programming language to learn first?” Scheme is ranked 8th while Haxe is ranked 32nd. The most important reason people chose Scheme is:
Scheme syntax is extremely regular and easy to pick up. A *formal* specification of the syntax fits onto just a few pages; it can be introduced informally in a paragraph or two. Students are not distracted by remembering how to write if statements or loops or even operator precedence because every syntactic follows the same pattern. Ultimately, everything looks something like this: (func a b c) This includes not only user-defined functions but even control flow: (if cond then-clause else-clause) or even primitive operations like `define` and `set`: (define foo 10) (set! foo 11) This means that nothing really has special syntactic treatment in the language. There are essentially no weird edge-cases to memorize, and different concepts are given a more equal weight in the language. (Unlike Algol-like languages which tend to given undue weight to loops and assignment statements, for example.)
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Simple syntax
Scheme syntax is extremely regular and easy to pick up. A formal specification of the syntax fits onto just a few pages; it can be introduced informally in a paragraph or two. Students are not distracted by remembering how to write if statements or loops or even operator precedence because every syntactic follows the same pattern.
Ultimately, everything looks something like this:
(func a b c)
This includes not only user-defined functions but even control flow:
(if cond then-clause else-clause)
or even primitive operations like define
and set
:
(define foo 10)
(set! foo 11)
This means that nothing really has special syntactic treatment in the language. There are essentially no weird edge-cases to memorize, and different concepts are given a more equal weight in the language. (Unlike Algol-like languages which tend to given undue weight to loops and assignment statements, for example.)
Pro No magic - it's clear how everything works
Scheme has far less built into the language itself, helping students see that things like OOP are not magical: they are just patterns for organizing code. Everything in Scheme is built up from a very small set of primitives which compose in a natural and intuitive fashion.
Having a language that does not accord many things special status helps keep students open minded. This will help students later go between different languages and paradigms from procedural to object-oriented to functional.
Pro Great at teaching fundamental programming ideas
Scheme teaches the important, fundamental ideas immediately without the distraction of unnecessary syntax or language features.
Pro Multi platform
GNU/Linux, OS X, and Windows versions available.
Pro Great, well known textbooks
There is a set of very strong textbooks introducing CS and programming using Scheme. These books are available for free online.
The most famous example--and one of the most famous CS books full stop--is Structure and Interpretation of Computer Programs usually known as SICP. This book introduces fundamental ideas in computer science and covers an incredible amount of material quickly and clearly without requiring any prior knowledge.
However, some people find SICP a bit challenging as a first text. Happily, there are other more introductory texts as well. Simply Scheme is a book designed to be read before SICP, easing beginners into the language as well as CS and programming in general. How to Design Programs is another text used in introductory college courses.
Pro Encourages creativity
Pro Robust metaprogramming
The quotation functionality of Lisp allow for extremely powerful, yet syntactically straightforward metaprogramming via macros. This is more powerful than the C preprocessor while being less involved than something like Template Haskell or F# quotations.
Using macros to properly decompose a problem domain teaches new developers good habits, improving composibility and reliability when tackling large programs. Scheme metaprogramming also serves as a gentle introduction to domain specific languages.
Pro Multiparadigm
Unlike most languages, Scheme actually accords both functional programming and imperative programming roughly equal status. Many other languages like Python and Java are staunchly imperative while SML and Haskell are primarily functional; Scheme is a nice middle ground.
Additionally, since Scheme syntax is extremely flexible, it can easily be re-purposed for teaching non-deterministic and logic programming. There is no need to learn a new language like Prolog when the same ideas can easily be expressed with Scheme syntax.
This gives students a good perspective on different ways to think about and organize programs, which makes it much easier to move forward to other languages and technologies.
Pro Compiles to multiple platforms and languages
Haxe allows you to develop for Web, iOS, Android, Blackberry, Windows, OSX, Linux and others, all at once, without the need to switch languages and maintain separate code bases.
This is possible because Haxe can compile to JavaScript, ActionScript, Flash AVM bytecode, C++, Neko, PHP, C# (.NET) and Java.
Support for even more platforms and languages is under development.
Pro Powerfully expressive but easy to learn
The language was designed to be very expressive with the smallest possible amount of syntactic sugar. There are actually fewer keywords than other languages with similar power.
Pro Extremely fast compilation
Haxe can easily compile over 100,000 lines of code to JS in seconds on a mid-spec computer.
Pro Similar to JavaScript and ActionScript 3
The language is very easy to learn for those with background in JavaScript or ActionScript 3.
Pro Large library support. From servers to games.
Haxelib (common library repo) and other sources contain large codebases for anything from cryptography to communications. A lot of these are fully cross platform and work with the JavaScript target.
The JavaScript target can be used for everything from node.js server applications (with code completion) to games using either the Flash-like OpenFL library or direct canvas or WebGL programming.
Pro Established project
Haxe has been around for more than 10 years (since 2005) and whilst not the most popular project, has had continuous growth.
Highly unlikely to disappear or for support to stop.
Pro Friendly community
Friendly community
Pro Pick up errors at compile time
One big advantage over pure javascript, (or some other languages listed here) is that Haxe will pick up a whole range of errors when you compile, saving you the pain of having to try and debug them later. This includes everything from syntax errors ("Unexpected ;") to type errors ("Class user has no field username. Suggestion: username").
Pro First class code completion
Code completion is built into the compiler and available to the IDE allowing for much smarter code completion that can actually parse and understand the syntax tree.
Pro Small, readable output
The output that is generated can be trimmed using "dead code elimination" to only include those functions and libraries that are strictly necessary. All code is very readable with only minimal extras for specific functionality.
Small output is good for frontend development as file size is a major concern.
Pro Powerful type inference with strong typing
After a type is inferred from its context, it cannot be changed to a new type, and type safety is done at compile time so it stays safe without the extra maintenance required for static typing.
Pro Syntactic macros
Syntactic macros allow you to extend compiler features at the syntax tree step. Macros come into play after code is parsed into the abstract syntax tree, and macros allow you to transform it before the rest of the compilation completes.
This provides for immense power, while at the same time scoping the extensibility at a level that is powerful, but well constrained.
Pro Code reuse server side and client side
You can use the same classes on the server as you do on the client where applicable. This saves a lot of time.
Pro Ability to use existing JS libraries
Haxe has the ability to use "externs". These are haxe files which describe the usage of existing JS libraries. Get code completion and compile-time-checking for everything from jQuery to Node.js.
Even without externs, native JS code can still be used through untyped code.
Pro Can create complex applications without needing webpack, npm or other crutches
Haxe has the power and expression to not need the npm dependancy hell that is common in js and typescript, bit it's still simple.
Pro Algebraic data types and pattern matching.
Pro Offload execution to the server with remoting
Using a remoting proxy you can get type safe server to client communications, allowing for remote method execution on the server as if they were part of the client side code.
Pro Package management like Java
Package tree is just directory tree, it's wonderful!
Pro Builtin conditional compilation support
Haxe supports conditional compilation, so depending on compiler flags Haxe will include or exlcude sections of your code. Making it easy to have debug and release builds.
Pro Abstract enums allow constants with exhaustiveness check
You can define constants in an abstract enum and when used in a switch/case statement Haxe checks for exhaustiveness, making sure every constant is covered - with no runtime implication.
Pro Type safety for exísting JS libraries
Haxe compiler will check types when using externs for existing libraries.
Pro Available in NPM
Pro Ability to skip type checking when calling non Haxe code
You should use externs when calling non Haxe code, but if you just need to call one or two external JS functions, you can skip type checking by calling untyped code.
Pro Create without needing to be limited to a language, target, or commercial ecosystem
Pro Abstracts allows me to create more intative api's without runtime overhead
Cons
Con Little job market
There are little to none jobs searching for a Scheme programmer. The ones that exist are more related to Research in Maths or Artificial Intelligence.
Con A language that is purely academic
If someone said "I am starting a project in Scheme" then they are either talking about their homework or they are starting a joke.
Con Fragmented ecosystem
Scheme is an IEEE standard, not an implementation. Unfortunately, the standard is too minimal and practical implementations have diverged--they had to expand on the standard to get anything done, but did so in incompatible ways.
The later de facto standard R6RS tried to correct this, but lost Scheme's minimalist elegance in the process. The newer R7RS standard takes the best of both worlds with an elegant minimalist core and a practical standard library.
Con Very different semantics from mainstream programming languages
LISP-like languages are very different from mainstream languages (such as C/C++/Java/JavaScript/Python/you-name-it) - both in semantics and syntax. This, in turn, severely limits uses of whatever-learned-with-Scheme, for real-world use.
Con Bad support in some popular IDEs
While it has great support in Visual Studio Code and Vim for example, it still lacks support in some IDEs such as IntelliJ.
Con You need to code interfaces to work with existing JavaScript code
Some popular libs like JQuery have maintained externs, for any specific code or lib already in JS you have to write the externs to use it in your haxe application.
Con No Qt support
There is currently no support for Qt.
Con Full programs only
You can create small utility functions with Haxe, but generally it is a lot more work than with other JS compilers. Haxe is best used when you have a larger project.