When comparing C vs Go, the Slant community recommends Go for most people. In the question“What is the best programming language to learn first?” Go is ranked 2nd while C is ranked 3rd. The most important reason people chose Go is:
The language is designed in a manner that seems logical. Syntax is simplified to reduce burden on the programmer and compiler developers.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Understanding of computers
Learning C forces you to grapple with the low-level workings of your computer (memory management, pointers, etc.) in ways that the other languages abstract away. Without an understanding of these low-level aspects of computer programming you will be limited if you try to develop an application that needs to run in a memory or performance constrained environment.
Other languages like Python can obscure a lot of details, so your foundation may be weaker.
Pro Helps with learning other languages later
A lot of languages used in the industry have a C-like syntax (C++, Java, Javascript, C#, PHP) and starting with C will help new developers to be familiar with it's syntax and by extensions with the syntax of many popular languages.
Pro Industry standard
C is the industry standard programming language, moreover, it is the most popular programming language to use. C is the language used for most Windows, UNIX and Mac operating systems.
Pro Portable
C is portable between most hardware. Generally a C compiler is made for any new architecture, and already exists for existing architectures.
C is portable between all operating systems (Windows, UNIX, Mac, etc.) and only needs a program to be recompiled to work. This allows anyone on any operating system to learn about the language and not be held back by intricacies of their operating system.
With this said, C's portability these days is not quite what it used to be. Much of said portability relies on the POSIX standard in particular, and as time passes, the compliance of a given system with that standard is becoming less certain; especially in the case of Linux. Most things will still be portable (or at least emulatable) between Windows, Linux, and FreeBSD for example; but you will at times need to make use of platform-specific support libraries and APIs as well.
Pro Must-have
Capability to program in C is greatly appreciated in developers, creates an image of competency, and many programmers will learn it at some point in their careers.
Pro Low level of abstraction
While higher level languages languages like Java and Python provide possibilities to be "more expressive" per line of code, it's much more convenient to start with "less efficient" (get me right) language, in order to get initial concepts of how things behave at lower level.
Actually C is a good starting point moving to both higher and lower levels of abstraction, the good example here would be learning C before Assembler, as for general use the Assembler quite hard to understand due to low level of its abstraction (like getting the understanding on how loops work in C before trying to implement them on Assembler).
Pro More control over the code
Pro The king of languages, imitated, extended but never equalled
Made of a small set of keywords and rules, only your imagination is the limit. Above all, when it comes to 'pro' programming, C is the only one to rely on.
Pro Teaches good practices
Writing in C will require you to understand how things are done. C implies using and understanding the fundamentals. Learning a higher-level language after is much easier.
Pro Portable between CPU architectures
C was designed to be independent of any particular machine architecture, and so with a little care, it is easy to write "portable" programs (see here). By design, C provides constructs that map efficiently to typical machine instructions, and therefore it has found lasting use in applications that had formerly been coded in assembly language like operating systems or small embedded systems.
Pro C is simple with lesser rules than any other language
C is standardized and it is the go-to language when you have to speed things up.
Pro Ubiquitous
There is a C compiler available for probably every computer system in existence today.
Pro Easy to drop down to assembly
Sometimes you really need to program directly in assembly. C’s ABI and common compiler extensions make this a piece of cake.
Pro If you can't grok C you should not be a professional programmer
It sets an early bar that if you can't hurdle you might as well do something other than programming and not waste any more of your time.
Pro Basic concepts can be applied to accelerate learning any other language
You can easily pivot knowledge learned here and apply it to almost every other language.
Pro Foundational, difficult but important
Learning C will teach valuable skills and transferrable understanding of computing. While learning a scripting language may be easier, students will not understand system constraints and performance problems, nor what features like garbage collection are actually doing in other languages.
Pro Low level langauge
Pro Simplified C-like syntax that is as easy to read and write as Python
The language is designed in a manner that seems logical. Syntax is simplified to reduce burden on the programmer and compiler developers.
Pro Great team working behind it
Go has a solid team of engineers working on it (some of the best networking engineers in the world are working on Go). Up until now, the great engineering of the language has compensated for its lack of power.
Pro Easy to install and configure; simple to compile software
Go software can be immediately installed, regardless of your operating system, package manager, or processor architecture with the go get command. Software is compiled statically by default so there is no need to worry about software dependencies on the client system. Makefiles and headers are no longer necessary, as the package system automatically resolves dependencies, downloads source code and compiles via a single command: go build
.
Pro Programmers don't have to argue over what 10% subet of the language to implement in their software project
The language promotes programming in a specific idiomatic style, which helps keep every programmer on the same page.
Pro Supports 'modules' in the form of packages
Every Go source file contains a package line that indicates which package a file belongs to. If the name of the package is 'main', it indicates that this is a program that will be compiled into a binary. Otherwise, it will recognize that it is a package.
Pro Demonstrates a unique, simple concept to object-oriented programming
All types are essentially objects, be they type aliases or structs. The compiler automatically associates types to their methods at compile time. Those methods are automatically associated to all interfaces that match. This allows you to gain the benefits of multiple inheritance without glue code. As a result of the design, classes are rendered obsolete and the resulting style is easy to comprehend.
Pro Great language for building networking services
Go was started as a systems language but now it has fully committed in the niche of networking services. This has been a brilliant move by Go because it allows them to capitalize on the immense talent of the Go engineering team (who are in the most part network engineers).
In a world dominated by Java EE and slow scripting language, Go was a breath of fresh air and it continues to be one of the most powerful languages if you want to build networking services.
Pro Exceptionally simple and scalable multithreaded and concurrent programming
Goroutines are "lightweight threads" that runs on OS threads. They provide a simple way for concurrent operations — prepending a function with go
will execute it concurrently. It utilizes channels for communication between goroutines which aids to prevent races and makes synchronizing execution effortless across goroutines. The maximum number of OS threads goroutines can run on may be defined at compile time with the GOMAXPROCS
variable.
Pro The go compiler compiles binaries instantly — as fast as a scripting language interpreter
Compiled binaries are fast — about as fast in C in most cases. Compiles on every OS without effort — truly cross-platform compiler. As a result of the fast compilation speed, you can use the gorun program to use go source code as if it was a scripting language.
Pro Performance is on the order of C and Java
Go is blazing fast, but easier to write than Python, JS, Ruby, or many other dynamic languages.
Pro Jobs available
You can find a Job knowing Go. Which is more than can be said with many other languages.
Pro API documentation is rich in content; easy to memorize
Only features deemed critical are added to the language to prevent cruft from working its way into the language. The language is small enough to fit inside one's head without having to repeatedly open documentation. Documentation is hosted on an official webpage in a manner that is simple to read and understand.
Pro Supports functional programming techniques such as function literals
This naturally also supports first class and high order functions, so you may pass functions as variables to other functions.
Pro Multiple variables may be assigned on a single line
This conveniently eliminates the need to create temporary variables.
Fibonacci example: x, y = y, x+y
Pro Built-in unit testing
The idiomatic approach to writing a Go software project is to perform test-driven development with unit testing. Every source code file should have an associated *_test.go
file which tests functions in the code.
Pro Provides tools for automatically formatting code for your entire software project
This helps keep every programmer on the same page in a project and eliminates arguments over formatting styles.
Pro Automatically generates API documentation for installed packages
Godoc is provided to automatically generate API documentation for Go projects. Godoc also hosts its own self-contained web server that will list documentation for all installed packages in your Go path.
Pro Supports splitting source code into multiple files
As long as every source code file in a directory has the same package name, the compiler will automatically concatenate all of the files together during the compilation process.
Pro Syntax for exported code from a package is simplified to be less verbose than other languages
Any variable, type and function whose name begins with a capital letter will be exported by a project, while all other code remains private. There is no longer a need to signify that a piece of code is 'private' or 'public' manually.
Cons
Con Languages is full of corner cases and undefined behaviors
Undefined behavior in a program can cause unexpected results, making it hard to debug. With UB, program behavior may vary wildly depending on optimization settings. There are many cases that invoke UB, such as signed overflow, invalid dereferences, large integer shifts, uninitialized variables, etc. These serve to frustrate novice programmers when they could be learning other concepts.
Con Requires memory management
Learning programming is already hard enough when you don't have to worry about memory leaks.
Con Completely lacks type safety
The C standard library is not type safe, and the language itself does not promote type safety built into the language, which leads to error-proneness of the language. If anything, it would be recommended that those interested in C to instead put their time in D, which actually includes a complete copy of the C standard library rewritten to be fully type safe.
Con C will require you to learn concepts too advanced for most beginners
While other programmers will learn algorithms and structures and will do magic tricks and awesome applications, you will learn trash info that you should know maybe after 5-7 years experience in software development, not earlier. It's like going the first time as a seven year old kid to first school class, and your teacher tells you to learn you about Discrete Math, without basic math and how to do 2x2.
If you wish to be a really good programmer, C for sure will be in your portfolio, but not as a first language, and this programming language is used only for very hard and very limited tools which require a lot of professional skills from the programmer.
Con Does not support modules; header file annoyances
Header files are a poor man's implementation of modules. Modern programming languages make use of modules which eliminate the need for C includes and header files and the many issues caused by them, such as the complete lack of dependency checking. Header files often contain even more include statements that point to other header files which also point to even more which drastically increases compile time. Modules only have to be compiled once, and when importing those modules into your software project, you only have to pull in the module that you are using, which is often times already precompiled. This way, the compiler knows exactly what it needs before beginning to compile your project and can automatically compile the few dependencies it needs in advance rather than recursively compiling every header file it runs across as in C.
Con Steep learning curve
While the language compliments knowledge of computer components very well, and gives a deeper understanding, it is also quite difficult to learn, and to use correctly, especially without aforementioned knowledge.
Con Low-level
Depending on the purpose this can be either a pro or a con. If the task is to learn how to program, low-level of C will impend learning important concepts. Furthermore, C is rather limited in ways of building abstractions.
"Low-levelness" of C can be a pro feature in learning system programming.
Con Other languages can do it easier or better
There are languages like Rust, Object Pascal, D, Golang, Vlang, Odin, Zig, Jai, etc... that can be used instead. The other languages are easier to understand, use, and/or about as fast.
Con Compiles procedurally rather than intelligently
In the same manner that C recursively compiles header files ad infinitum without any sort of dependency checking, C source code is also compiled in the same manner. If you attempt to call a function before it is declared, the compiler will fail because the function was not compiled before it was caled.
Con Lack of support for first class strings
C does not support the string type, nor does it support UTF-8 strings that modern languages are employing today. Instead of strings, C makes use of the *char type which is a pointer to a character array.
Con Arrays are not first class objects
When an array is passed to a function, it is converted to a pointer, even though the prototype confusingly says it's an array. When this conversion happens, all array type information gets lost. C arrays also cannot not be resized, which means that even simple aggregates like a stack are complicated to implement. C arrays also cannot be bounds checked, because they don't know what the array bounds are.
Con Undefined behaviors and weak limited type safety
Subtle errors can render the entire program "undefined" by the complicated C standard. The standard imposes no requirements in such cases. Thus C compiler is free to ignore the existence of such cases and Bad Things are prone to happen instead. Even experts can't reliably avoid undefined cases in C, so how can beginners be expected to do so? C allows for non-type safe operations such as logic errors, wild pointers, buffer overflow, etc. UB and type safety issues create a large number of bugs and security vulnerabilities.
Con The need for C developers in the current market is very low, and trending downward
Older languages, like C, are no longer in their hay day. Even if you do learn it as your first language, you are only setting yourself up to need to learn another language in the long run. If you want a skill that you can not only learn from, but also potentially build a career on, C should not be your first choice.
Con Isn't truly portable or cross platform
The C programming language is not portable to other operating systems, and even different compilers, because the C language does not provide any reference cross platform libraries or compilers. Different platforms and compilers provide their own implementation of the C standard library which may not be compatible with the implementation in another compiler or platform. Without cross platform libraries and tools, one cannot state that C is portable. This is in stark contrast to modern programming languages that provide their own cross platform libraries and compilers, such as D, Go and Rust.
Con Only offers basic support for source code split into multiple files
Modern programming languages are capable of compiling split source code files by concatenating them together efficiently at compile time before compiling them. However, C requires the developer to resort to messing with header files and makefiles to get similar functionality.
Con C structs are very weak and outdated
C structs lack a lot of modern capabilities that are vital in programming languages of today, such as assigning member functions to structs to give them object-oriented capabilities, constructs, deconstructors and RAII. Great care must be used when using structs in C to prevent memory leaks and ridiculously slow structs.
Con Includes require obscene resources to compile
All the modern languages have resulted in ditching the ancient deprecated model of #include statements and have instead adopted the superior model of modules. When compiling software written in C, the programmer is forced to also compile X headers which contain Y headers which contain Z headers and so forth -- drastically increasing the number of lines that need to be compiled. In order to compile something as simple as "Hello, World", for example, 18K lines of code needs to be compiled. This can be very taxing on RAM and CPU resources, causing compile times to quickly absorb a large portion of the programming process.
Con Heavily outdated programming concepts
C lacks a large majority of programming concepts that modern languages make use of today. The existing functionality of C makes use of outdated and deprecated methodologies which can be of great annoyance to the modern day programmer.
Con Golang controlled by Google
Solves Google problems, which might not be your or the majority of user's problems. Was created for the benefit and purposes of Google, so is less flexible in language direction and options.
Con Hard to abstract even the simplest notions
Go is famously regarded as very simple. However, this simplicity becomes problematic in time. Programmers who use Go find themselves over and over again writing the same thing from a very low point of view. Domains not already served by libraries that are easy to glue are very difficult to get into.
Con Forces K&R style and won't allow Allman style
Golang developers were extremely short-sighted and biased by forcing the K&R style, which should never have happened. Basically kicking Allman style users out of their language.
Con Doesn't have true enums
Golang does weirdness with const versus having real enums, like other languages. This reflects the stubbornness and shortsightedness of the core developers, similar to the issue with generics, where it was denied that it was needed until it became too obvious that it should have been added years ago.
Con Does not have sum types
Makes it harder to have functions of different parameters types in a non OOP language. Thus messy generics and interfaces, and more confusion, where sum types could have solved a number of issues.
Con It appears Google uses position to snuff out or suppress other languages
Newer languages that could threaten Golang (or other Google controlled languages) appear to have suppressed search results on Google and YouTube. Dangerous situation where large company can manipulate user choice and market share. The freedom to freely choose and user rights need to be protected.
Con Designed to make the programmer expendable
Go was designed for large team projects where many contributors may be incompetent. That Go can still get things done under these conditions is a testament to its utility in this niche. Go's infamously weak abstraction power is thus a feature, not a bug, meant to prevent your teammates from doing too much damage. This also means any team member can be easily replaced by another code monkey at minimum cost. Good for the company, bad for you. The more talented programmers, on the other hand, will be very frustrated by having one hand tied behind their back.
Con Easy to shadow variable
Due to single character only difference, declare and assign statement can easily shadow variable from outer scope unconsciously. Example:
err := nil
if xxx {
err := somefunctionthatreturnsanerr
}
return err // always return nil
Con No forms designer
Those who are used to Visual Studio can feel the lack of a forms designer for rapid development.
Con Bizarre syntactic choices like a unique date format.
Con Changing visibility requires renaming all over the code
Con Lacks support for immutable data
Only way to prevent something from being mutated is to make copies of it, and to be very careful to not mutate it.
Con Performance slowdown because of indirect calls and garbage collection
Practically no meaningful Go application can be written without indirect function calls and garbage collection, these are central to Go's core infrastructure. But these are major impediments to achieving good performance.
Con Implementation of interfaces are difficult to figure out
Finding out what interfaces are implemented by a struct requires a magic crystal ball. They are easy to write, but difficult to read and trawl through.