TypeScript vs Haxe
When comparing TypeScript vs Haxe, the Slant community recommends TypeScript for most people. In the question“What is the best programming language to learn first?” TypeScript is ranked 6th while Haxe is ranked 32nd. The most important reason people chose TypeScript is:
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference. It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Optional static typing
Typescript has optional static typing with support for interfaces and generics, and intelligent type inference.
It makes refactoring large codebases a breeze, and provides many more safeguards for creating stable code.
Pro Strong typed language
Lot of benefits of it, you can read this.
Pro Strict superset of Javascript
Every existing Javascript program is already a valid TypeScript program giving it the best support for existing libraries, which is particularly useful if you need to integrate with an existing Javascript code base.
Pro First party Visual Studio support
As a Microsoft developed project, it has first party Visual Studio support that's on par with its C# support with features like syntax sensitive statement completion.
Pro Has a repository of high quality TypeScript type definitions for popular libraries
There are many ready to use and high quality TypeScript definitions for popular libraries including jquery, angular, bootstrap, d3, lodash and many-many more.
Pro Adds support for object-oriented programming
Typescript enables familiar object-oriented programming patterns: classes, inheritance, public/private methods and properties, et cetera.
Pro Polyfill for ES6 fat-arrow syntax
Typescript implements the fat arrow syntax, which always maintains the current context for this
and is a shorter/more convenient syntax than traditional function definition.
Pro Great support for React, integrated typed JSX parsing
Strongly typed react components, so UI "templating" automatically gains type safety.
Pro Great support for editors (Sublime, Code, Vim, IntelliJ...)
Pro Works well with existing Javascript code
Both can call Javascript code and be called by Javascript code. Making transitioning to the language very easy.
Pro Compiles to very native looking code
Compiles to simple looking Javascript making it easy to understand what is happening and learn the language (if you already know Javascript).
Pro Built and supported by Microsoft
Being built by Microsoft, TypeScript is much more likely than most other similar open-source projects to receive continued long-term support, good documentation, and a steady stream of development.
Pro Ability to do functional programming
Pro Clear roadmap
TypeScript has a clear and defined roadmap with rapid and constant releases.
Pro Low number of logical errors brought in by built-in type annotations
TypeScript's built-in type signatures allow developers to fully document interfaces and make sure that they will be correctly compiled. Therefore, cutting down on logical errors.
Pro Works well with Angular 2
Angular 2 is built using TypeScript and applications built using it can make use of that (or not).

Pro Compiles to multiple platforms and languages
Haxe allows you to develop for Web, iOS, Android, Blackberry, Windows, OSX, Linux and others, all at once, without the need to switch languages and maintain separate code bases.
This is possible because Haxe can compile to JavaScript, ActionScript, Flash AVM bytecode, C++, Neko, PHP, C# (.NET) and Java.
Support for even more platforms and languages is under development.
Pro Powerfully expressive but easy to learn
The language was designed to be very expressive with the smallest possible amount of syntactic sugar. There are actually fewer keywords than other languages with similar power.
Pro Extremely fast compilation
Haxe can easily compile over 100,000 lines of code to JS in seconds on a mid-spec computer.
Pro Similar to JavaScript and ActionScript 3
The language is very easy to learn for those with background in JavaScript or ActionScript 3.

Pro Large library support. From servers to games.
Haxelib (common library repo) and other sources contain large codebases for anything from cryptography to communications. A lot of these are fully cross platform and work with the JavaScript target.
The JavaScript target can be used for everything from node.js server applications (with code completion) to games using either the Flash-like OpenFL library or direct canvas or WebGL programming.
Pro Established project
Haxe has been around for more than 10 years (since 2005) and whilst not the most popular project, has had continuous growth.
Highly unlikely to disappear or for support to stop.

Pro Friendly community
Friendly community
Pro Pick up errors at compile time
One big advantage over pure javascript, (or some other languages listed here) is that Haxe will pick up a whole range of errors when you compile, saving you the pain of having to try and debug them later. This includes everything from syntax errors ("Unexpected ;") to type errors ("Class user has no field username. Suggestion: username").
Pro First class code completion
Code completion is built into the compiler and available to the IDE allowing for much smarter code completion that can actually parse and understand the syntax tree.
Pro Small, readable output
The output that is generated can be trimmed using "dead code elimination" to only include those functions and libraries that are strictly necessary. All code is very readable with only minimal extras for specific functionality.
Small output is good for frontend development as file size is a major concern.
Pro Powerful type inference with strong typing
After a type is inferred from its context, it cannot be changed to a new type, and type safety is done at compile time so it stays safe without the extra maintenance required for static typing.

Pro Syntactic macros
Syntactic macros allow you to extend compiler features at the syntax tree step. Macros come into play after code is parsed into the abstract syntax tree, and macros allow you to transform it before the rest of the compilation completes.
This provides for immense power, while at the same time scoping the extensibility at a level that is powerful, but well constrained.
Pro Code reuse server side and client side
You can use the same classes on the server as you do on the client where applicable. This saves a lot of time.

Pro Ability to use existing JS libraries
Haxe has the ability to use "externs". These are haxe files which describe the usage of existing JS libraries. Get code completion and compile-time-checking for everything from jQuery to Node.js.
Even without externs, native JS code can still be used through untyped code.
Pro Can create complex applications without needing webpack, npm or other crutches
Haxe has the power and expression to not need the npm dependancy hell that is common in js and typescript, bit it's still simple.
Pro Algebraic data types and pattern matching.
Pro Offload execution to the server with remoting
Using a remoting proxy you can get type safe server to client communications, allowing for remote method execution on the server as if they were part of the client side code.
Pro Package management like Java
Package tree is just directory tree, it's wonderful!
Pro Builtin conditional compilation support
Haxe supports conditional compilation, so depending on compiler flags Haxe will include or exlcude sections of your code. Making it easy to have debug and release builds.
Pro Abstract enums allow constants with exhaustiveness check
You can define constants in an abstract enum and when used in a switch/case statement Haxe checks for exhaustiveness, making sure every constant is covered - with no runtime implication.
Pro Type safety for exísting JS libraries
Haxe compiler will check types when using externs for existing libraries.

Pro Available in NPM
Pro Ability to skip type checking when calling non Haxe code
You should use externs when calling non Haxe code, but if you just need to call one or two external JS functions, you can skip type checking by calling untyped code.
Pro Create without needing to be limited to a language, target, or commercial ecosystem
Pro Abstracts allows me to create more intative api's without runtime overhead
Cons
Con Too similar to Javascript
Presents some advantages compared to Javascript, but because it is designed to be a superset of Javascript, it means all the bad parts of Javascript are still present.
Con Type checking not enforced by default
You have to use compiler flags to make sure it catches flaws like usage of implicit any, etc.
Con Type inference coverage is incomplete
The default type when declaring and using a variable is any
. For example, the following should break but does not:
function add(a:number) { return a + 1 }
function addAB(a, b) {return add(a) + b}
addAB("this should break but doesn't :(", 100)
In order to avoid this, you have to declare type signatures for every variable or parameter or set the flag --noImplicityAny
when running the compiler.
Con Requires "this" for field access
Even in cases were there is no ambiguity, you still have to use "this.fieldName" instead of just "fieldName".
Con Syntax is too verbose
Con No support for dead code elimination
Typescript compiler does not remove dead code from generated file(s), you have to use external tools to remove unused code after compilation. This is harder to achieve, because Typescript compiler eliminated all type information.
Con No support for conditional compilation
There is no clean way to have debug and release builds compiled from the same source, where the release version removes all debugging tools and outputs from the generated file(s).
Con Awful error messages
Comparing to Elm or Rust for example, TypeScript's error messages won't say you very much. For example if you change method of interface which your class implements it won't say your class have incorrect implementation. Instead it'll show error in usage of instances of class. In some cases it can spoil hours of your work trying to figure out why your parameters are incorrect.
Con Technical debt
As consequence of not enforcing type checking.
Con No Java-like package structure
If you prefer a Java-like approach of partitioning your code into different packages, the module system of typescript will confuse you.
Con Small community
Con No option to declare that a function throws errors
Con Bad support in some popular IDEs
While it has great support in Visual Studio Code and Vim for example, it still lacks support in some IDEs such as IntelliJ.
Con You need to code interfaces to work with existing JavaScript code
Some popular libs like JQuery have maintained externs, for any specific code or lib already in JS you have to write the externs to use it in your haxe application.
Con No Qt support
There is currently no support for Qt.
Con Full programs only
You can create small utility functions with Haxe, but generally it is a lot more work than with other JS compilers. Haxe is best used when you have a larger project.
Con It's not easy to convince people it's as good as it really is unless you can get them to really try it
