When comparing Java vs C, the Slant community recommends C for most people. In the question“What is the best programming language to learn first?” C is ranked 3rd while Java is ranked 23rd. The most important reason people chose C is:
Learning C forces you to grapple with the low-level workings of your computer (memory management, pointers, etc.) in ways that the other languages abstract away. Without an understanding of these low-level aspects of computer programming you will be limited if you try to develop an application that needs to run in a memory or performance constrained environment. Other languages like Python can obscure a lot of details, so your foundation may be weaker.
Specs
Ranked in these QuestionsQuestion Ranking
Pros
Pro Consistent programming standards
Most Java code follows very standardized coding styles. This means that when you're starting out, there are fewer questions about how you should implement something as the programming styles and patterns are well established and consistent. This consistent style means that it's often easier to follow others' example code, and that it's more likely to meet at least a certain minimum standard of quality. This discipline with consistent stylistic standards also becomes useful later, when collaborating on projects with larger teams.
Pro Massive amount of libraries and APIs
Java has been around for such a long time that there have been tens of thousands of APIs and libraries written for almost anything you want to do.
Pro Most commonly used language in industry
Java is one of the most popular languages in industry, consistently ranking either first, or occasionally second (behind C or Javascript) in terms of usage. Polls (see sources below) show it to be consistently in high demand, particularly as measured by job board postings. This makes Java a great time investment, as you will be easily able to get a job utilizing your skills, particularly as those Java applications in production now will continue to need maintenance in the future. It also results in great support for tools and plenty of computer science books, example projects and online tutorials.
Pro Fantastic IDEs
Because Java is statically typed, integrated development environments (IDEs) for Java can provide a lot more feedback on errors you will encounter. Java IDEs can give you specific errors in the location where they occur without having to run the code every time. This makes is faster to debug and learn from your mistakes.
IDEs also have extensive auto complete capabilities that can help you learn the programming libraries you are using faster and tell you what functions are available.
Pro Introduces you to object oriented languages
Object Oriented Programming (OOP) is a paradigm that teaches you to split your problem into simpler modules with few connections between them; it's the most common paradigm used in industry. Java is the best choice as an introduction to object oriented languages because, as a statically-typed OOP-only language, it very clearly highlights core OOP principles such as encapsulation, access control, data abstraction, and inheritance.
While a scripting language provides more flexibility and terseness, learning a scripting language first would not instill these fundamental concepts as well, as they tend to obscure details such as how types work, and are less encouraging of an object oriented style.
Pro Best introduction to "C style" languages
The Java syntax is very similar to other C style languages. Learning the fundamentals of Java will port over well to other languages so you can apply what you've leaned to other languages afterwards.
Pro Platform Independent
Because of the Java Virtual Machine, the Java programming language is supported wherever a JVM is installed.
Pro You know what you do, and still simple
Because everything is typed and there is no silent cast or fail, you exactly know what you are manipulating, and there's no magic.
Have you ever watched a beginner struggling with a "couldn't call method x on y" in python or Javascript? These languages don't teach you what proper types are.
Java is one of the simplest languages to learn these basic concepts you find in every programming language.
Pro Understanding of computers
Learning C forces you to grapple with the low-level workings of your computer (memory management, pointers, etc.) in ways that the other languages abstract away. Without an understanding of these low-level aspects of computer programming you will be limited if you try to develop an application that needs to run in a memory or performance constrained environment.
Other languages like Python can obscure a lot of details, so your foundation may be weaker.
Pro Helps with learning other languages later
A lot of languages used in the industry have a C-like syntax (C++, Java, Javascript, C#, PHP) and starting with C will help new developers to be familiar with it's syntax and by extensions with the syntax of many popular languages.
Pro Industry standard
C is the industry standard programming language, moreover, it is the most popular programming language to use. C is the language used for most Windows, UNIX and Mac operating systems.
Pro Portable
C is portable between most hardware. Generally a C compiler is made for any new architecture, and already exists for existing architectures.
C is portable between all operating systems (Windows, UNIX, Mac, etc.) and only needs a program to be recompiled to work. This allows anyone on any operating system to learn about the language and not be held back by intricacies of their operating system.
With this said, C's portability these days is not quite what it used to be. Much of said portability relies on the POSIX standard in particular, and as time passes, the compliance of a given system with that standard is becoming less certain; especially in the case of Linux. Most things will still be portable (or at least emulatable) between Windows, Linux, and FreeBSD for example; but you will at times need to make use of platform-specific support libraries and APIs as well.
Pro Must-have
Capability to program in C is greatly appreciated in developers, creates an image of competency, and many programmers will learn it at some point in their careers.
Pro Low level of abstraction
While higher level languages languages like Java and Python provide possibilities to be "more expressive" per line of code, it's much more convenient to start with "less efficient" (get me right) language, in order to get initial concepts of how things behave at lower level.
Actually C is a good starting point moving to both higher and lower levels of abstraction, the good example here would be learning C before Assembler, as for general use the Assembler quite hard to understand due to low level of its abstraction (like getting the understanding on how loops work in C before trying to implement them on Assembler).
Pro More control over the code
Pro The king of languages, imitated, extended but never equalled
Made of a small set of keywords and rules, only your imagination is the limit. Above all, when it comes to 'pro' programming, C is the only one to rely on.
Pro Teaches good practices
Writing in C will require you to understand how things are done. C implies using and understanding the fundamentals. Learning a higher-level language after is much easier.
Pro Portable between CPU architectures
C was designed to be independent of any particular machine architecture, and so with a little care, it is easy to write "portable" programs (see here). By design, C provides constructs that map efficiently to typical machine instructions, and therefore it has found lasting use in applications that had formerly been coded in assembly language like operating systems or small embedded systems.
Pro C is simple with lesser rules than any other language
C is standardized and it is the go-to language when you have to speed things up.
Pro Ubiquitous
There is a C compiler available for probably every computer system in existence today.
Pro Easy to drop down to assembly
Sometimes you really need to program directly in assembly. C’s ABI and common compiler extensions make this a piece of cake.
Pro If you can't grok C you should not be a professional programmer
It sets an early bar that if you can't hurdle you might as well do something other than programming and not waste any more of your time.
Pro Basic concepts can be applied to accelerate learning any other language
You can easily pivot knowledge learned here and apply it to almost every other language.
Pro Foundational, difficult but important
Learning C will teach valuable skills and transferrable understanding of computing. While learning a scripting language may be easier, students will not understand system constraints and performance problems, nor what features like garbage collection are actually doing in other languages.
Pro Low level langauge
Cons
Con Too verbose
- A Hello world needs package, class, static method and the actual
printf
. - Reading a line from input requires instatiating 5 objects in the right order.
- Exceptions are everywhere, particularly since all values are nullable.
- Java has a getter/setter culture, but without native syntax support.
- portable Java code lacks anonymous functions, and continues to lack good support for partial application, compensating instead with verbose design patterns, kludges like anonymous inner classes, or just inline code.
- It is statically typed without type inference, with a culture that promotes long class names.
- Poor support for sum-types and pattern matching leads to overuse of inheritance for dynamic dispatch and chains of nested conditionals
Especially for beginners, this can make reading Java code feel overwhelming; most Java courses tell students to simply copy, paste, and ignore a significant percentage of the code until they've learned enough to understand what it means.
For experienced programmers, this makes Java feel tedious, especially without an IDE, and actively discourages some solutions and some forms of abstraction.
Con Confusing mis-features
Some features in Java can be quite confusing for beginners.
Encapsulation is needlessly obfuscated with a confusing access control model. As an example, the "protected" keyword not only grants access to child classes, but to the entire package. Since small programs are written as one package, it becomes functionally equivalent to "public".
In OOP, everything is supposed to be an object, but, in Java, primitive types such as integers, booleans and characters are not, and must be handled as special cases.
Java continues to lack many high-level features, and, particularly prior to Java 7, compensated by adding confusing Java-only features, such as anonymous subclasses. Some example code is unreadable without knowing a special-case feature, libraries differ in style based on when they were released or what platform they target(e.g., Android vs. Desktop), and some solutions just aren't available on some platforms.
Con Locks you into the static OOP mindset
Overly focuses on class-based OOP to the detriment of programmer freedom or alternative paradigms that are better for various problems. Traps programmers into an always use class-based OOP mindset.
Con Half-baked generics
Type erasure means it doesn't even exist at runtime. The whole generics system is confusing for beginners.
Con Slow and heavy
Too far from the machine hardware.
Con Too much hype and useless complication
I've been developing in Java for 20 years and I love this language, I've never used a better designed one over the last 30+ years. However, starting with version 6, the number of really useful features in each release has steadily decreased. There is now too much marketing in Java's evolution and too few concern about developers' needs (the functionalities of the applications we develop haven't changed and enterprise application architecture is much simpler than 20 years ago). I'm deeply sad to say that today, learning Python is a much wiser choice.
Con Garbage collection may teach bad habits
Java is a garbage collected language and it does not force programmers to think about memory allocation and management for their programs. This is fine most of the time. However, it may cause some difficulties in adjusting to a non-GC language (such as C for example), where memory management needs to be done manually. But if good coding practices and habits are followed, this shouldn't be much of a problem.
Con Long learning curve
Con Worst-of-both-worlds static type system
It's just barely good enough to make decent IDEs, but it's not at the level of Idris or even Haskell. For large enterprise projects, the IDE support is important, but the static typing in Java just gets in the way for the smaller projects beginners would start with.
Python is duck typed and this makes small programs easy to develop quickly, but the price is that you have to write unit tests to avoid breaking larger programs. In contrast, you can be reasonably certain that a program that actually compiles in Idris does what you want, because assertions are built into the powerful type system. Java can't make that claim and still requires unit tests. Java has the worst of both worlds because of its poor static type system.
Con Static typing but no type inference
The type system gets in your way more than it helps. Heavy IDE support is absolutely required for reasonable productivity. This means beginners have to learn not just the language, but eventually a complex, heavyweight IDE too.
Con Lacks modern features
Java evolves very slowly - lambda expressions weren't available until Java 8 (which is not available on Android), and despite getters/setters being a long-time convention, the language still doesn't have native accessor syntax (a la C#'s properties). It's unlikely newer, popular features like list comprehensions or disjoint union types will be available anytime soon. While not strictly required for novice programmers, these make problems more complicated and tedious than they need to be - for example, when a simple local function would do, (portable) Java demands anonymous inner classes, an interface and a class, or worse, no abstraction at all.
Con Anything java can do, C# does better and more elegant.
Since C# came later, it could avoid the blatant mistakes made in Java.
Con Enforces some misguided principles
Java utilizes principles that primarily organize code into "classes" as the central concept, instead of more familiar organizational methods.
Con Checked exceptions
Checked exceptions add significantly to the cognitive load of the beginner. The more rules unrelated to the actual task that you pile onto the beginner, the slower he gets. Exponentially. And for what? Sure, they look good on paper, but checked exceptions are useless in the real world. They don't scale.
When you're calling APIs five levels deep and your method's throws clause balloons to 80 exceptions you might see, it gets kind of ridiculous. So you just say throws Exception
, which defeats the whole feature, but is more pointless boilerplate in an already tediously verbose language.
Or worse, while developing you can't be bothered and just catch{}
and silently swallow them all. Then you forget about it. Now you don't even have exceptions. The cure is worse than the disease!
So the wiser Java programmers will wrap all checked exceptions into a runtime exception, effectively making exceptions unchecked. That's at the cost of more boilerplate, but it's the lesser of evils. Unfortunately, Java doesn't even have macros to do this part for you. Maybe your IDE can write code templates for you, but that doesn't make it any easier to read.
Con Languages is full of corner cases and undefined behaviors
Undefined behavior in a program can cause unexpected results, making it hard to debug. With UB, program behavior may vary wildly depending on optimization settings. There are many cases that invoke UB, such as signed overflow, invalid dereferences, large integer shifts, uninitialized variables, etc. These serve to frustrate novice programmers when they could be learning other concepts.
Con Requires memory management
Learning programming is already hard enough when you don't have to worry about memory leaks.
Con Completely lacks type safety
The C standard library is not type safe, and the language itself does not promote type safety built into the language, which leads to error-proneness of the language. If anything, it would be recommended that those interested in C to instead put their time in D, which actually includes a complete copy of the C standard library rewritten to be fully type safe.
Con C will require you to learn concepts too advanced for most beginners
While other programmers will learn algorithms and structures and will do magic tricks and awesome applications, you will learn trash info that you should know maybe after 5-7 years experience in software development, not earlier. It's like going the first time as a seven year old kid to first school class, and your teacher tells you to learn you about Discrete Math, without basic math and how to do 2x2.
If you wish to be a really good programmer, C for sure will be in your portfolio, but not as a first language, and this programming language is used only for very hard and very limited tools which require a lot of professional skills from the programmer.
Con Does not support modules; header file annoyances
Header files are a poor man's implementation of modules. Modern programming languages make use of modules which eliminate the need for C includes and header files and the many issues caused by them, such as the complete lack of dependency checking. Header files often contain even more include statements that point to other header files which also point to even more which drastically increases compile time. Modules only have to be compiled once, and when importing those modules into your software project, you only have to pull in the module that you are using, which is often times already precompiled. This way, the compiler knows exactly what it needs before beginning to compile your project and can automatically compile the few dependencies it needs in advance rather than recursively compiling every header file it runs across as in C.
Con Steep learning curve
While the language compliments knowledge of computer components very well, and gives a deeper understanding, it is also quite difficult to learn, and to use correctly, especially without aforementioned knowledge.
Con Low-level
Depending on the purpose this can be either a pro or a con. If the task is to learn how to program, low-level of C will impend learning important concepts. Furthermore, C is rather limited in ways of building abstractions.
"Low-levelness" of C can be a pro feature in learning system programming.
Con Other languages can do it easier or better
There are languages like Rust, Object Pascal, D, Golang, Vlang, Odin, Zig, Jai, etc... that can be used instead. The other languages are easier to understand, use, and/or about as fast.
Con Compiles procedurally rather than intelligently
In the same manner that C recursively compiles header files ad infinitum without any sort of dependency checking, C source code is also compiled in the same manner. If you attempt to call a function before it is declared, the compiler will fail because the function was not compiled before it was caled.
Con Lack of support for first class strings
C does not support the string type, nor does it support UTF-8 strings that modern languages are employing today. Instead of strings, C makes use of the *char type which is a pointer to a character array.
Con Arrays are not first class objects
When an array is passed to a function, it is converted to a pointer, even though the prototype confusingly says it's an array. When this conversion happens, all array type information gets lost. C arrays also cannot not be resized, which means that even simple aggregates like a stack are complicated to implement. C arrays also cannot be bounds checked, because they don't know what the array bounds are.
Con Undefined behaviors and weak limited type safety
Subtle errors can render the entire program "undefined" by the complicated C standard. The standard imposes no requirements in such cases. Thus C compiler is free to ignore the existence of such cases and Bad Things are prone to happen instead. Even experts can't reliably avoid undefined cases in C, so how can beginners be expected to do so? C allows for non-type safe operations such as logic errors, wild pointers, buffer overflow, etc. UB and type safety issues create a large number of bugs and security vulnerabilities.
Con The need for C developers in the current market is very low, and trending downward
Older languages, like C, are no longer in their hay day. Even if you do learn it as your first language, you are only setting yourself up to need to learn another language in the long run. If you want a skill that you can not only learn from, but also potentially build a career on, C should not be your first choice.
Con Isn't truly portable or cross platform
The C programming language is not portable to other operating systems, and even different compilers, because the C language does not provide any reference cross platform libraries or compilers. Different platforms and compilers provide their own implementation of the C standard library which may not be compatible with the implementation in another compiler or platform. Without cross platform libraries and tools, one cannot state that C is portable. This is in stark contrast to modern programming languages that provide their own cross platform libraries and compilers, such as D, Go and Rust.
Con Only offers basic support for source code split into multiple files
Modern programming languages are capable of compiling split source code files by concatenating them together efficiently at compile time before compiling them. However, C requires the developer to resort to messing with header files and makefiles to get similar functionality.
Con C structs are very weak and outdated
C structs lack a lot of modern capabilities that are vital in programming languages of today, such as assigning member functions to structs to give them object-oriented capabilities, constructs, deconstructors and RAII. Great care must be used when using structs in C to prevent memory leaks and ridiculously slow structs.
Con Includes require obscene resources to compile
All the modern languages have resulted in ditching the ancient deprecated model of #include statements and have instead adopted the superior model of modules. When compiling software written in C, the programmer is forced to also compile X headers which contain Y headers which contain Z headers and so forth -- drastically increasing the number of lines that need to be compiled. In order to compile something as simple as "Hello, World", for example, 18K lines of code needs to be compiled. This can be very taxing on RAM and CPU resources, causing compile times to quickly absorb a large portion of the programming process.
Con Heavily outdated programming concepts
C lacks a large majority of programming concepts that modern languages make use of today. The existing functionality of C makes use of outdated and deprecated methodologies which can be of great annoyance to the modern day programmer.